Systematic encoding via Grobner bases for a class of algebraic-geometric Goppa codes

نویسندگان

  • Chris Heegard
  • J. Little
  • Keith Saints
چکیده

Any linear code with a nontrivial automorphism has the structure of a module over a polynomial ring. The theory of Griihner bases for modules gives a compact description and implementation of a systematic encoder. We present examples of algebraic-geometric Goppa codes that can be encoded by these methods, including the one-point Hermitian codes. Index TermsSystematic encoding, algebraic-geometric Goppa codes, Grobner bases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic-geometric codes and multidimensional cyclic codes: a unified theory and algorithms for decoding using Grobner bases

In this paper, it is proved that any algehraicgeometr ic code can be expressed as a cross section of an extended multidimensional cyclic code. Both algebraic-geometric codes and multidimensional cyclic codes are descr ibed by a unified theory of l inear block codes def ined over point sets: algebraic-geometric codes are def ined over the points of an algebraic curve, and an m-dimensional cyclic...

متن کامل

Automorphisms and Encoding of AG and Order Domain Codes

We survey some encoding methods for AG codes, focusing primarily on one approach utilizing code automorphisms. If a linear code C over Fq has a finite abelian group H as a group of automorphisms, then C has the structure of a module over a polynomial ring P. This structure can be used to develop systematic encoding algorithms using Gröbner bases for modules. We illustrate these observations wit...

متن کامل

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

On the structure of Hermitian codes1

Let X,,, denote the Hermitian curve xm+’ = ym + y over the field F,,,z. Let Q be the single point at infinity, and let D be the sum of the other rn3 points of X,,, rational over F,,,z, each with multiplicity 1. X,,, has a cyclic group of automorphisms of order m2 1, which induces automorphisms of each of the the one-point algebraic geometric Goppa codes &(D,uQ) and their duals. As a result, the...

متن کامل

On the Construction of Algebraic-Geometric Codes

In this paper, a new view point to linear codes is presented. A concept level of linear codes is introduced and a bound of linear code’s level is given. It can be used to simplify the construction of Algebraic Geometric Codes. In particular, we define a class of codes which can be considerated as generalized RS codes and can be constructed via symbolic computation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 41  شماره 

صفحات  -

تاریخ انتشار 1995